FROM THE DESK OF ENGR. SADIQ +92322 - 2387056



# <u>COMPREHENSIVE EXAMINATION 2020</u> <u>X – MATHEMATICS</u> (<u>SCIENCE GROUP</u>)

#### **IMPORTANT INSTRUCTIONS:**

This Paper consisting of Multiple Choice Questions (Section 'A') and all of them to be answered. Its total duration is 30 minutes only.

|            | SECTION                                                                                    | 'A' (MULTIPLE-                                                         | CHOICE QUESTI                            | <b>ONS)</b> (Marks: 20) |
|------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|-------------------------|
| <u>Q</u> . | <b>1:</b> Choose the correct answ                                                          | ver for each from the giv                                              | en options.                              |                         |
| 1.         | (-8, -9) is in quadrant:<br>*1 <sup>st</sup>                                               | *2 <sup>nd</sup>                                                       | *3rd                                     | *4 <sup>th</sup>        |
| 2.         | $2\sqrt{3} + 6\sqrt{3} =$ $*12\sqrt{3}$                                                    | *8√6                                                                   | *4√3                                     | *8√3                    |
| 3.         | The Characteristic of log 0.0 $*\overline{3}$                                              | 0226 is:<br>*2                                                         | *3                                       | *2                      |
| 4.         | If $a + b = 2$ and $a - b = 2$ the *2                                                      | e value of $a^2 + b^2$ is:<br>*3/2                                     | *-1                                      | *4                      |
| 5.         | The H.C.F. of $8x^3y^2$ and $12x^3y^2y^2$<br>* $4x^2y$                                     | <sup>2</sup> y is:<br>*96x <sup>3</sup> y <sup>2</sup> First Online In | *12x <sup>2</sup> y <sub>n</sub> Karachi | *None of these          |
| 6.         | The Solution Set of $\sqrt{y-2}$<br>*18                                                    | = - 4:<br>*±14                                                         | *{ }                                     | *None of these          |
| 7.         | If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , then $ad - bd$<br>*Singular Matrix | c is called:<br>*Scalar Matrix                                         | *Determinant                             | *Zero Matrix            |
| 8.         | The multiplicative inverse of                                                              | $f\left(\frac{1}{a+b}\right)$ is:                                      |                                          |                         |
|            | $*\frac{-1}{a+b}$                                                                          | * <i>a</i> + <i>b</i>                                                  | *a - b                                   | $\frac{a-1}{a-b}$       |
| 9.         | If the standard deviation of s *20                                                         | eries is 4, its variance is:                                           | *2                                       | *16                     |
| 10.        | The sum of angles of a parall $*240^{\circ}$                                               | lelogram is:<br>*180 <sup>0</sup>                                      | *360 <sup>0</sup>                        | *320 <sup>0</sup>       |
| 11.        | The distance of any point of *radius                                                       | a circle from its center is c<br>*diameter                             | called its:<br>*chord                    | *secant                 |
| 12.        | The triangle having no sides<br>*Right                                                     | congruent is called:<br>*Obtuse                                        | *Isosceles                               | *Scalene                |
| 13.        | $\sqrt{1 - \sin^2 \theta} = \\ *\cos \theta \qquad *ta$                                    | inθ                                                                    | *cot θ                                   | *sec θ                  |
| 14.        | A set which contains all the s<br>*Universal set                                           | sets under consideration is<br>*Superset                               | called:<br>*Power set                    | *Disjoint set           |
| 15.        | It should be added to $x^2 + \frac{1}{x}$                                                  | $\frac{1}{2}$ to make it perfect square                                |                                          |                         |
| 16.        | * <i>xy</i><br>The degree of the Polynomia<br>*2                                           | $x^{2}x^{2}y^{2}$<br>$113x^{2}y + 4x^{2} + 5$ is:<br>$x^{3}$           | 2*387-                                   | -0.56                   |
| 17.        | $\cos 45^0 = \frac{1}{\sqrt{2}}$                                                           | *√2                                                                    | *1                                       | $*\frac{1}{2}$          |
| 18.        | The duplicate ratio of 2:3 is: *4:3                                                        | *4:9                                                                   | *2:9                                     | *8:27                   |
| 19.        | The Point through which the *Orthocenter                                                   | medians of the triangle pa<br>*Centroid                                | ass is called:<br>*Circumcenter          | *Incenter               |
| 20.        | $(AUB)^{\prime} = *A^{\prime}UB^{\prime}$                                                  | *A' U B                                                                | *A <sup>'</sup> ∩ B <sup>'</sup>         | *None of these          |

CATIONIST HE BE

FROM THE DESK OF *ENGR*. *SADIQ* +92322 - 2387056



# <u>COMPREHENSIVE EXAMINATION 2020</u> <u>X – MATHEMATICS</u> (<u>SCIENCE GROUP</u>)

#### **IMPORTANT INSTRUCTIONS:**

This Paper consisting of Short-Answer Questions (Section 'B') and Descriptive-Answer Questions (Section 'C') is being given after 30 minutes. Its total duration is  $2 \frac{1}{2}$  hours only.

**SECTION 'B' (SHORT – ANSWER QUESTIONS)** 

(Marks: 50)

**<u>NOTE</u>** : Attempt any <u>**TEN**</u> Part questions from this Section. Selecting **TWO PARTS** from each Question.

| 1. | (i)         | If $A = \{1, 2, 3, 4\}$ ; $B = \{2, 4, 6, 8\}$ ; Prove that $(A \cap B) \cup (B \triangle A) = A \cup B$<br>If $A = \{a, b, c\}$ and $B = \{x, y\}$ ; Find only two Binary relations in $A \times B$ ? OR<br>If $A = \{1, 2, 3, 4\}$ ; $B = \{2, 4, 6, 8\}$ and $C = \{2, 3, 6, 8\}$ then find $(A - B) \times (B - C)$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | (ii)        | Simplify $\left(\frac{x^{2a}}{x^{a+b}}\right)\left(\frac{x^{2b}}{x^{b+c}}\right)\left(\frac{x^{2c}}{x^{c+a}}\right) \underline{OR} \left(\frac{x^a}{x^b}\right)^{a+b} \cdot \left(\frac{x^b}{x^c}\right)^{b+c} \div 4(x^c, x^a)^{a-c} \underline{OR} \left(\frac{(216)^2}{(\frac{1}{25})^{\frac{2}{3}}(25)^{\frac{1}{2}}}{(\frac{1}{25})^{\frac{2}{3}}}\right)^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |             | $\underline{OR}  \sqrt[4]{\frac{a^x}{a^y}} \times \sqrt[4]{\frac{a^y}{a^r}} \times \sqrt[4]{\frac{a^r}{a^x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    | (iii)       | Split       Image: Constraint of the following using Log Tables: $(780.6)^{\frac{1}{2}} X \sqrt{3.000}$ OR $(85.7) \times 2.47$ OR $(0.87)$ OR $(6.735)(48.27)$ $(16.18)^2$ OR $(16.18)^2$ $(16.18)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 2. | (i)         | Find the value of x - y; If xy = 20 and x + y = -9? OR If $a - \frac{1}{a} = 4$ ; Find the value of $a^3 - \frac{1}{a^3}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    |             | <b>OR</b> Find the value of $l^3 + m^3 + n^3 - 3lmn$ ; when $l + m + n = 15$ and $lm + mn + nl = 74$ <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    |             | Find the value of $p^2 + \frac{1}{p^2}$ ; If $p = 3 + 2\sqrt{2}$ OR If $x + y + z = \sqrt{7}$ and $xy + yz + zx = 2$ ; Find the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|    |             | of $x^2 + y^2 + z^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|    | (ii)        | Solve the following equations with the help of Cramer's rule?<br>5x - 2y - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|    |             | 3x - 2y = 1 $2x - y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|    |             | <b><u>OR</u></b> If $A = \begin{bmatrix} -3 & -2 \\ 5 & 6 \end{bmatrix}$ ; Find $A^{-1}$ and Prove that $A \cdot A^{-1} = I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|    |             | <b><u>OR</u></b> By using Matrices Method, solve the following system of equations;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    |             | 8x - 4y = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|    |             | $\mathbf{x} + 2\mathbf{y} = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|    | <b>(ii)</b> | For what value of 'q' $4x^4 + 12x^3 + 25x^2 + 24x + q$ will be a Perfect Square? OR<br>For what values of 'p' and 'a' $4x^4 + 12x^3 + 25x^2 + nq + q$ will be a Perfect Square? OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|    |             | What should be added to $4a^4 + 4a^3 + 5a^2 + 2a + 5$ to make it a Perfect Square?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 3. | (i)         | A set of data contains the values as 148, 145, 160, 157, 156, 160, 160, 165; show that their mode > |  |  |  |  |
|    |             | 11, 13, 25, 15, 12, 18, 17, 23, 20, 16. Find their standard deviation. OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|    |             | Marks obtained by some students in computer science exam are given below. Find median of their numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

| Marks.          | 20 - 24 | 25 - 29 | 30 - 34 | 35 - 39 | 40 - 44 | 45 - 49 |
|-----------------|---------|---------|---------|---------|---------|---------|
| No. of Students | 25      | 28      | 32      | 25      | 13      | 12      |

<u>OR</u> Find the Variance from the following information:  $\overline{x} = 12.5$ ,  $\sum x = 125$ ,  $\sum x^2 = 6666$ Find the variance of the data. <u>OR</u> Find factors with the help of remainder theorem  $x^3 + 7x^2 + 14x + 8$ 

(ii) Find all the trigonometric ratios of 60° or 45°? <u>OR</u> Prove that  $(\cos \theta - \sin \theta)^2 + 2\sin \theta \cos \theta = 1$ <u>OR</u> Prove that:  $\frac{\sin \phi}{1 + \cos \phi} + \frac{1 + \cos \phi}{\sin \phi} = 2 \csc \theta$  <u>OR</u> Prove that  $\sin^2 \theta + \cos^2 \theta = 1$  <u>OR</u> Prove that:  $\cot \theta + \tan \beta = \cot \beta$ .  $\sec^2 \beta$ 

#### (iii) Show that the Sum of measures of all angles of the triangle must be equal to 180°. OR

# If one side of a triangle is extended the exterior angle so formed is in measure greater than either of the two interior opposite angles. Prove it.

**<u>OR</u>** If a Transversal intersects two coplanar lines, such that the pair of Alternate angles formed are congruent; Prove that the lines are Parallel.

- 4. (i) Eliminate 'a' from the following equations;  $a^2 + \frac{1}{a^2} = m^2$ ;  $a^4 + \frac{1}{a^4} = b^4$  OR Find the relation independent of 't' from the following equations:  $x = \frac{a(1-t^2)}{1+t^2}$ ;  $y = \frac{b(1-t^2)}{2t^2}$  OR Eliminate 'y' from the following equations;  $\frac{y}{b} + \frac{b}{y} = 2c$ ;  $\frac{y^2}{b^2} + \frac{y^2}{b^2} = a^2$  OR The sum of three consecutive odd numbers is 909. Find the numbers.
  - (ii) If  $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ ; Prove that :  $(a^2 + c^2 + e^2)(b^2 + d^2 + f^2) = (ab + cd + ef)^2$  OR If  $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$  then prove:  $\frac{x^3}{a^2} + \frac{y^3}{b} + \frac{z^3}{c^2} = \frac{(x+y+z)^3}{(a, b, c)^2}$  OR If  $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$  then prove that  $\frac{a^4b^2 + a^2e^2 - e^4f}{b^6 + b^2f^2 - f^5} = \frac{a^4}{b^4}$
  - (iii) Find the solution set of the following inequation:  $\frac{x+5}{10} < \frac{25-4x}{5} \quad \forall x \in N \quad \underline{OR}$ Find the Solution set of:  $-6 + |5x-3| = 3 \quad \underline{OR} \quad \left|\frac{2x-1}{3}\right| - 2 = 0 \quad \underline{OR} \quad \sqrt{4x-5} = \sqrt{3x+7} \quad \underline{OR}$ Solve the equation  $x^2 - x - 56 = 0$  by using quadratic formula.
- 5. (i) A pole 14 meters high on the bank of a stream makes an angle of 30° with a place on the opposite bank.
   Find the breadth of the stream. OR A tree is at a distance of 50m from a point on the ground. The angle of elevation of the top of tree from this point is 30°. Find the height of tree.
  - (ii) Resolve into factors:  $x^{2}(y z) + y^{2}(z x) + z^{2}(x y)$  OR  $4a^{2}(3b 4c) + 9b^{2}(4c 2a) + 16c^{2}(2a 3b)$
  - (iii) Congruent Chords of a circle (or congruent circles) are equidistant from their centers. Prove it.
     <u>OR</u>
     If two tangents are drawn to a circle from a point outside it. Prove that these tangents are

equal in length.

Marked with 'RED BOLD' are the 'MOST IMPORTANT' Questions.



# +92322-2387-056

### **SECTION 'C' (DESCRIPTIVE – ANSWER QUESTIONS)** (Marks: 30)

**<u>NOTE</u>** : Attempt any <u>**THREE</u>** questions from this Section including **Q.1 which is Compulsory**.</u>

In a correspondence of two right angled triangles. If their hypotenuses are congruent and one more side of one triangle is congruent to the corresponding side of the other then prove that the two triangles are congruent.

In a correspondence of two triangles, if one side and any two angles of one triangle are congruent to the corresponding side and angles of the other, Prove that the two triangles are congruent.

2. Find the Solution Sets of following equations graphically. (Find four ordered pairs for each equation)

2x - y = 5x - 2y = 1

x - 2y = -3

 $\begin{array}{l} x - y = 3\\ 2x + y = 6 \end{array}$ 

<u>OR</u>

```
\mathbf{2x} + \mathbf{y} = \mathbf{14}
```

<u>OR</u>

3. (i) Prove that the perpendicular bisector of a chord of a circle passes through the center of the circle. OR

The line segment that joins the mid-points of two sides of triangle is parallel to the third side and equal to one half of its length.

(ii) The measure of a central angle of a minor arc of a circle is double that of the inscribed angle of the corresponding major arc. <u>OR</u>

If a diameter of a circle bisects a chord; prove that it is perpendicular to the chord.

- 4. Factorise the following:
  - i.  $ax^4 \frac{a}{16} \ \underline{OR} \ a^4 + 4b^4 \ \underline{OR} \ a^8 + a^4 + 1 \ \underline{OR} \ a^3 a^2 + 2$
  - ii.  $(ab + cd)^2 (ac bd)^2 OR x^6 y^6$
  - iii.  $12x^2 13 + 3$  OR  $x^2 + 15x 100$  OR  $5x^2 13x 6$  OR  $x^2 13xy + 30y^2$
  - iv.  $(x-2y)^3 64z^3 \underline{OR} 27x^3 1 + 8y^6 + 18xy^2 \underline{OR} ab + amx bx mx^2$ 
    - <u>**OR**</u>  $64y^6 + \frac{64}{y^6} \overline{8y^9} + 96y^3$
- 5. Draw a triangle ABC such that m  $\overline{AB} = 4$  cm; m  $< B = 60^{\circ}$  and m  $\overline{BC} = 5$  cm; Draw the circumcircle of the triangle. Write also the steps of construction. <u>OR</u>

Draw the transverse common tangents of the two circles with the radii with 3cm and 2cm, when the distance between their centers is 6cm. Write down the steps of construction.

